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Abstract

Despite numerous computational advances over the last few decades, molecular
dynamics still favors explicit (and thus easily-parallelizable) time integrators for
large scale numerical simulation. As a consequence, computational e�ciency in
solving its typically sti↵ oscillatory equations of motion is hampered by stringent
stability requirements on the time step size. In this paper, we present a semi-
analytical integration scheme that o↵ers a total speedup of a factor 30 compared
to the Verlet method on typical MD simulation by allowing over three orders of
magnitude larger step sizes. By e�ciently approximating the exact integration
of the strong (harmonic) forces of covalent bonds through matrix functions, far
improved stability with respect to time step size is achieved without sacrificing
the explicit, symplectic, time-reversible, or fine-grained parallelizable nature
of the integration scheme. We demonstrate the e�ciency and scalability of
our integrator on simulations ranging from DNA strand unbinding and protein
folding to nanotube resonators.

Keywords: Energy Conservation, Explicit Integration, Exponential
Integrators, Fast Multipole Method, Krylov Subspace Projection, Molecular
Dynamics, Momentum Conservation, Symplectic Integrators.

1. Introduction

With an ever-increasing need to understand complex behavior at the molec-
ular level comes a high demand for computational methods that can simulate
the macroscopic properties of systems from models describing the geometry and
the interactions of their molecules. Molecular Dynamics (MD), in particular,
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has been proven helpful in nanomaterials and bioengineering, as it allows to un-
derstand observed phenomena and predict observations that would be di�cult
or costly to make experimentally. The drastic improvements in computational
power witnessed in recent years have allowed to investigate the structure, dy-
namics, and even thermodynamics of increasingly complex biological molecules.
Yet, only modest progress has been made in extending the size of the time
step used in numerical schemes: since explicit time integrators are favored for
their ease of parallelization, the time step size remains restricted by the highest
frequency components of the intrinsic dynamics of the nuclei—typically arising
from sti↵ bonding between atoms.

This paper tackles this long-standing issue, and proposes the use of a semi-
analytical integrator derived from [16, 11] to reliably produce three orders of
magnitude larger time steps in MD than regular integrators [60], for a resulting
30-fold speedup on average. We demonstrate the e�ciency and scalability of
our explicit, structure-preserving, and easily parallelizable approach on various
typical MD simulation runs, varying from DNA unfolding and protein folding
to nanotube resonators.

1.1. Related work

Classical versus Quantum Molecular Dynamics. While the motion of atoms and
molecules can be obtained in principle by solving the time-dependent Schrödinger
equation simultaneously for both electrons and nuclei, such a quantum mechan-
ics approach remains too computationally prohibitive in practice to investigate
large molecular systems (see [29] for recent advances). Instead, classical Molec-
ular Dynamics uses Newtonian mechanics: it treats the nuclei (which are much
heavier than electrons) as point particles in a force field that accounts for both
their mutual interaction as well as the electronic interactions. This force field
derives from a potential energy function that is formulated either from expec-
tation values of the quantum system (see Section 2), or using empirical laws.

Numerical integration schemes. Given the typically large number of molecules
involved in MD simulations, a fully analytical solution of the resulting New-
tonian mechanical system is out of reach. Consequently, numerical methods
that evaluate the position of each nucleus at (fixed or adaptive) time inter-
vals are used to find computational approximations to the solutions, given
proper initial conditions [28]. Established molecular dynamics simulators (e.g.,
LAMMPS [36]) often make use of the “velocity Verlet” integration scheme [60]—
a simple, explicit integrator that can easily be parallelized and whose symplectic
nature provides numerical benefits including exact momenta preservation and
excellent energy behavior. However, solving for this initial value MD problem
is particularly challenging due to the strong covalent bonds between nuclei, re-
quiring painfully small time steps to properly capture the dynamics without
generating instability. Turning these covalent bonds into rigid constraints (us-
ing RATTLE [4], SHAKE [51], or through internal variables [58] for instance)
alleviates the most stringent time step restrictions, but at the cost of having to
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solve non-linear systems and a significant decrease in parallelizability. Compu-
tational e�ciency has further increased over the past few years, either through
algorithmic improvements (e.g., by computing the more distant interactions less
often), or by leveraging specialized hardware for parallel computing (GPU com-
puting). However, the ability to achieve longer time steps e�ciently remains a
major computational challenge.

1.2. Contributions

In this paper, we present a practical approach to computational molec-
ular dynamics. We propose an e�cient (explicit, second-order, and linear-
time), structure-preserving (symplectic), and semi-analytical (exponential, or
Gautschi-type1) integration scheme that allows the use of significantly larger
time steps than usual methods through its closed-form treatment of the strongest
bonding forces deriving from harmonic potentials.

The key ingredient of our approach, i.e., the use of an exponential integrator
combined with a Krylov-based evaluation of matrix functions, has been pro-
posed in the context of quantum molecular dynamics [29]; but hasn’t gained
acceptance in classical MD so far. Yet, we will demonstrate that its use is par-
ticularly appropriate for Hamiltonian systems involving a potential energy with
a strong harmonic part, such as the harmonic potentials of bounded atoms in
combination with regular non-bonded potentials in MD, or in coarse-graining
methods [34]. Moreover, our algorithm scales linearly with the number of atoms
and exhibits excellent long-term preservation of momenta and energy, which are
hallmarks of symplectic and time-reversible integrators. Finally, our scheme is
easily parallelizable as it involves sparse matrix and vector operations, rendering
it particularly attractive as a basis for large-scale MD computations.

2. Background

For completeness, we begin our exposition by reviewing the forces involved
in molecular dynamics, then discussing the resulting sti↵ness of the di↵erential
equations that we wish to numerically simulate.

1The history of so-called exponential integrators [30] goes back to the late 1950s, when
Joseph Hersch pointed out that traditional numerical integrators do not compute the correct
solution even if the di↵erential equation is analytically solvable. He then proposed an exact
integration scheme for linear ordinary di↵erential equations with constant coe�cients, see
[24]. Three years later, Walter Gautschi proposed the integration of the non-linear part of
the variation of parameters formula with trigonometric polynomials, see [16]. Almost 20 years
later, this approach was combined with the trapezoidal rule [11] and a significant improvement
was achieved in the late 1990s by Bosco Garćıa-Archilla, who introduced filter functions for
the non-linear part arguments in this context [15]. Today, there exists a variety of exponential
integrators, like multistep integrators of this type (cf. [9]), Rosenbrock methods (cf. [50]),
and Runge-Kutta-based methods of simple (cf. [37]) and higher orders (cf. [14]) aiming at
finding an e�cient approximation of the solutions of sti↵ di↵erential equations.
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2.1. Ehrenfest potential

To bypass the di�culty of solving the time-dependent Schrödinger equation
simultaneously for both electrons and nuclei, Ehrenfest was the first to describe
the evolution in time of a molecular system using Newtonian (classical) dynamics
where nuclei are simply submitted to a force field deriving from a single, e↵ective
potential, given as the mean expectation value of the electronic Hamiltonian.
(The reader can refer to Appendix A for a recap of the various approximations
needed to derive this simplified model.) This Ehrenfest potential V is of the
form

V (R1(t), . . . ,RN (t)) :=
NX

i=1

NX

j=1

uij (rij )

with distances rij :=
���Rj �Ri

��� and pairwise potentials uij between nucleus i
and nucleus j for i, j = 1, . . . ,N , see [49]. As it will become useful in the formal
expressions of the various parts of this potential, we denote the set of bonded
nuclei B ⇢ {1, . . . ,N }2 through pairs of nucleus indices, the set of bond angles
A ⇢ {1, . . . ,N }3 through triplets of nucleus indices, and the set of torsional angles
T ⇢ {1, . . . ,N }4 through its four associated nucleus indices. Finally, we denote
by

✓ijk := ^
⇣
Ri �Rj ,Rk �Rj

⌘

the angle for (i, j,k) 2 A and by

�ijkl := ⇡ ± arccos
0
BBBBBB@

D
rij ^ rjk

���rjk ^ rkl
E

���rij ^ rjk
���
���rjk ^ rkl

���

1
CCCCCCA

the torsional angle2 for (i, j,k, l) 2 T (see Fig. 1), where h· | ·i denotes the Eu-
clidean inner product.

2.2. Bonded and non-bonded potentials

The potential V is typically written as the sum of four distinct potentials
V = VB + VA + VT + VLJC , where the covalent bond potential VB is given by a
simple harmonic potential

VB :=
X

(i,j)2B

kBij

2
(rij � rij )2, (1)

2We make use of the equivalent so-called scalar product definition

�ijkl := ⇡ ± arccos
D
rij �

D
rij

���rkj /rkj
E
rkj

����rlk �
D
rlk

���rkj /rkj
E
rkj

E
,

since it leads to more e�cient computations [19]. Note that in both cases, the sign is deter-

mined by sgn(det(rij ,rjk ,rkl )) = sgn
D
rij

���rjk ^ rkl
E
.
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the angle potential VA is expressed as

VA :=
X

(i,j,k)2A

kAijk

2
(✓ijk �✓ijk)2,

the torsional potential VT is written as

VT :=
X

(i,j,k,l)2T

3X

s=1

kTijkl,s
⇣
cos

⇣
s�ijkl � �s

⌘
+1

⌘
,

and finally, the so-called Lennard-Jones and Coulomb potential is expressed as

VLJC :=
NX

i=1

i�1X

j=1

4✏

0
BBBB@

 
�ij
rij

!12
�
 
�ij
rij

!61CCCCA+
e2

4⇡✏0

ZiZj

rij

and accounts for non-bonded Van der Waals interactions, see [23, 38, 39]. These
potentials are parameterized by the harmonic bending constants kBij

for (i, j) 2
B, the initial distances rij between i and j for (i, j) 2 B, the angular constants

kAijk
for (i, j,k) 2 A, the initial angles ✓ijk between (i, j,k) 2 A, the torsional

constants kTijkl,s and phase shifts �s for (i, j,k, l) 2 T and s 2 {1,2,3}, the well-
depth ✏ and finite distance values �ij for all (i, j) 2 {1, . . . ,N }2 of the Lennard-
Jones potential. Note that in order to account for the anharmonicity of the bond
for large length deviation, the covalent bond potential can be expressed as a
Morse potential instead, as the steep “walls” of a quadratic potential can prevent
bond dissociation. However, a compromise between accuracy and computational
speed often dictates the use of mostly quadratic (and sometimes cubic and
quartic) terms in practice, with no discernably advert e↵ects on large molecules.

2.3. Sti↵ness of molecular dynamics

The typical coe�cients kBij
of covalent bond potentials are of the order of

1MJmol�1nm�2, whereas the coe�cients kAijk
, kTijkl,s , and ✏ associated to angle,

torsional, and Lennard-Jones potentials are around 1kJmol�1nm�2. Bonded
potentials thus di↵er by approximately three orders of magnitude from the re-
maining potentials, and render molecular dynamics sti↵ [10]. Sti↵ness spells
trouble for numerical simulation as it typically requires unduly small time step
sizes, particularly for explicit integrators: the presence of significant fast mo-
tions in MD can limit the time step to below one femtosecond. While implicit
integration can partially remedy this restriction, it can also introduce artificial
viscosity to the system, damping high frequencies and violating energy conser-
vation. Even symplecticity does not help with sti↵ problems: as the authors
of [22] point out, “for di↵erential equations where the high frequencies of the
oscillations remain nearly constant along the solution, [...] symmetry of the
methods is still essential, but symplecticity plays no role in the analysis and in
the numerical experiments [...].” Constraint algorithms have also been proposed
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Figure 1: Example scenario of distance rij , angle ✓ijk , and torsional angle �ijkl for (i, j,k, l) 2 T
in the case of a so-called trans configuration illustrated with an ethanol molecule.

for molecular dynamics simulations to directly satisfy the sti↵ bond-length con-
straints, thus removing the strongest forces in the system [25, 51, 58]. However,
these methods are typically di�cult to parallelize and involve tradeo↵s between
speed, stability, and range of applicability. Recent e↵orts towards e�cient and
parallelizable integrators (e.g., using constant Jacobian approximations [13])
are still limited to time steps of the order of one femtosecond for typical MD
simulations.

3. Semi-analytical Time Integration

In order to handle the sti↵ nature of the di↵erential equations at play in
an e�cient and structure-preserving manner, we base our approach to molec-
ular dynamics on a time-reversible, symplectic, and semi-analytical integration
scheme. Our method consists in reexpressing the equation of motion for MD
by singling out distinctively sti↵ forces that are linear in nuclei displacements.
We then provide a closed-form solution of the resulting di↵erential equation us-
ing trigonometric matrix functions. We finally evaluate this analytical solution
over a large time step through Krylov subspace reduction for computational
e�ciency, without a↵ecting the numerical behavior expected from a symplectic
and time-reversible integrator. This semi-analytical treatment of time integra-
tion of MD allows time steps that are over three orders of magnitude larger than
the conventional velocity Verlet scheme for the same level of accuracy, resulting
in a net speedup of a factor 30 on average. The overall numerical treatment has
a computational complexity that is linear in the size of the molecular structures.
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3.1. Reexpressing the equation of motion

Molecular dynamics is often written as a second order ordinary di↵erential
equation derived from the Hamiltonian form (see Eq. (A.7)) through:

MR̈(t) = �rR
✓
VB(R(t)) +VA(R(t)) +VT (R(t)) +VLJC (R(t))

◆

where R stores the positions of all nuclei. We can thus rewrite the equation of
motion as

MR̈(t) +KR(t) +G(R(t)) = 0

where KR(t) corresponds to the bonding forces rRVB(R(t)) in the previous

equation, and G(R(t)) := rR
⇣
VA(R(t)) +VT (R(t)) +VLJC (R(t))

⌘
regroups all the

weaker forces deriving from, respectively, the angle, torsional, and Lennard-
Jones and Coulomb potentials. We now transform the term KR(t) using a
co-rotational formulation originally introduced in [6, 61] for finite element simu-
lations, where geometrically non-linear deformations are decomposed into rigid
rotations and the remaining, small contributions due to pure strain: from a ro-
tation field (expressed through a sparse matrix Q) easily determined using basic
geometric operations [47], we turn KR(t) into QK(Q�1R(t)�R0) using the rest
positions R0. We now have isolated the (instantaneous) forces that are linear
in R(t), and we can treat the (non-linear, but small) extra term �QKR0 with
the other weak terms. Note that Q is orthogonal and K is symmetric as it is
a Hessian. Since the mass matrix M is invertible, we reexpress the equation of
motion as

R̈(t) +AR(t) +M�1G̃(R(t)) = 0

with G̃(R(t)) :=G(R(t))�QKR0 and where now A :=M�1QKQT may no longer
be symmetric for nuclei with di↵erent atomic masses. In order to maintain the
symmetry of the linear term, we use instead the equivalent equation

�̈(t) +⌦2�(t) +⇤(�(t)) = 0 (2)

using the modified coordinates �(t) :=
p
MR(t), ⌦2 :=

p
MA
p
M
�1
, and⇤(�(t)) :=p

M
�1
G̃(
p
M
�1
�(t)). The matrix ⌦2 is symmetric and positive definite by def-

inition, and thus diagonalizable, which implies that its square root ⌦ is well
defined.

3.2. Formal solution

We now seek to find the analytical solution of Eq. (2) for a given initial condi-
tion �(t0) = �0. We begin by considering the equivalent first-order Hamiltonian
system "

�̇(t)
�̇(t)

#
=

"
0 1
�⌦2 0

#"
�(t)
�(t)

#
+
"

0
⇤(�(t))

#
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with �(t) := �̇(t) and identity matrix 1 of dimension 3N . For conciseness, we
rewrite this system of equations as

Ẋ(t) =AX(t) + �(X(t)) (3)

where X(t) :=
"
�(t)
�(t)

#
, A =

"
0 1
�⌦2 0

#
, �(X(t)) =

"
0

⇤(�(t))

#
.

We can now apply Lagrange’s variation of parameters approach3 by considering
the general solution of the corresponding homogeneous equation Ẋ(t) = AX(t),
i.e.:

X(t) = exp(tA)⌘(t). (4)

Since the time derivative of this general solution form is Ẋ(t) =AX(t)+exp(tA) ⌘̇(t),
we find using Eq. (3) that the function ⌘(t) must satisfy:

⌘̇(t) = exp(�tA)�(X(t)) . (5)

Consequently, we deduce the closed-form solution of Eq. (3) with initial
condition X(t0) to be:

X(t) = exp(tA)
Z t

t0

exp(�⌧A)�(X(⌧))d⌧ + exp (� (t � t0)A)X(t0)

or, equivalently:

X(t +�t) = exp(�tA)X(t) +
Z t+�t

t
exp ((t +�t � ⌧)A) �(X(⌧))d⌧. (6)

The original first order system Eq. (3) thus admits the following solution:

"
�(t)
�(t)

#
=

Z t

t0

"
⌦�1sin ((t � ⌧)⌦)
cos ((t � ⌧)⌦)

#
⇤(�(⌧)) d⌧

+
"

cos ((t � t0)⌦) ⌦�1sin ((t � t0)⌦)
�⌦sin ((t � t0)⌦) cos ((t � t0)⌦)

#"
�(t)
�(t)

#
(7)

where we used the identity

exp(tA) = exp

 
t

"
0 1
�⌦2 0

#!
=

"
cos (t⌦) ⌦�1sin (t⌦)
�⌦sin (t⌦) cos (t⌦)

#
.

3The variation of parameters approach was introduced by Joseph-Louis Lagrange to solve
ordinary di↵erential equations: one employs the general formula of the solution of the as-
sociated homogeneous system, and replace the arbitrary constant with an initially unknown
function that has to be determined such that the inhomogeneous equation is satisfied [35].

8



3.3. Discrete formulation

From the analytical expression of the solution given in Eq. (7), we follow
[21] to discretize it into a one-step integrator in � and � through:

�n+1 = cos (�t⌦)�n +⌦�1sin (�t⌦)�n

+
1
2
�t2 (�t⌦)⇤(� (�t⌦)�n) ,

(8)

�n+1 = �⌦sin (�t⌦)�n + cos (�t⌦)�n

+
1
2
�t ( 0 (�t⌦)⇤(� (�t⌦)�n) + 1 (�t⌦)⇤(� (�t⌦)�n+1))

(9)

where �n := �(t0 + n�t), �n := �(t0 + n�t), and the so-called filter functions
�, , 0, 1 : C3N⇥3N ! C3N⇥3N are even functions that depend smoothly on the
square of their arguments (we discuss their exact expressions in Section 3.4). If
�(0) =  (0) =  0(0) =  1(0) = 1, the resulting integrator is consistent, and of or-
der two, see [21]. Moreover, the integrator is time-reversible for the choice  (·) =
sinc(·) 1(·) (where the cardinal sine matrix function sinc is defined through
sinc(·) := (·)�1sin(·) for any symmetric and positive definite matrix argument)
and  0(·) = cos(·) 1(·), as easily verified by interchanging n $ (n + 1) and
�t$ (��t).

If a two-step method is preferred, one can readily derive it by incorporat-
ing the term ⌦�1sin (�t⌦)�n+1 of Eq. (8) into Eq. (9) after multiplication by
⌦�1sin (�t⌦), leading to:

�n+1 = 2cos (�t⌦)�n ��n�1 +�t2 (�t⌦)⇤(� (�t⌦)�n) . (10)

The integration scheme in Eq. (10) is semi-analytic as it combines the an-
alytical closed-form solution of the linear part with a numerical integration of
the non-linear part. Because the sti↵ homogeneous part is treated exactly, we
will show in Section 4 that one can handle step sizes over three orders of magni-
tude larger than commonly used integration schemes without running the risk
of becoming unstable or losing accuracy.

3.4. Filter Functions, Symplecticity, and Long-term Behavior

The choice of filter functions  and � in Eq. (10) can greatly impact the
long-term properties of our integration method. In e↵ect, our integrator com-
bines the analytic solution of the sti↵ linear part with a  -filtered version of
the numerically computed solution of the non-linear part. To allow the error
function to smoothly decrease as the step size becomes smaller, the nonlinear
argument is also premultiplied by an additional filter function �.

The one-step formulation given by Eq. (8) and Eq. (9) defines a discrete flow

��t : (�n,�n)
T 7! (�n+1,�n+1)

T

that is a symplectic transformation if

�0�t
TJ�0�t = J (11)
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where �0�t represents the Jacobian of ��t (see Appendix B, Eq. (B.1)) and J an
anti-diagonal matrix (see Appendix A, Eq. (A.7)). We already saw that the dis-
crete flow is time reversible i↵  (·) = sinc(·) 1(·) and  0(·) = cos(·) 1(·). In this
case, direct calculation shows that Eq. (11) holds if and only if  (·) = sinc(·)�(·).
Therefore the simplest symplectic choice for the filter functions would be the
pair ( ,�) = (sinc,1). In order to improve numerical stability in sti↵ problems,
it is strongly recommended [15] to filter/mollify the position argument of the
non-linear term ⇤. Hence we use the symplectic pair ( ,�) = (sinc2,sinc): this
choice of filters guarantees a smooth evolution of the error function.4 The re-
sulting integrator in Eq. (10) is thus time-reversible and symplectic, and is able
to accurately and e�ciently integrate sti↵ molecular systems without artificial
damping. Additionally, linear and angular momenta are exactly preserved, while
energy does not drift even over long runs. Note finally that one can trivially
handle dissipative systems as well: a damping force of the form D�̇(t) can be in-
corporated if need be by simply adding it, as an external force, to the non-linear
forces ⇤ with a �-pre-filtered velocity computed via (�n+1 ��n)/�t.

3.5. E�cient Evaluation of Matrix Functions

The price to pay for a semi-analytical treatment of sti↵ linear forces is the
need to evaluate functions f(⌦2) of the matrix ⌦2 that occur in Eq. (10), such
as cos(�t⌦),sin(�t⌦), (�t⌦), or �(�t⌦). This is a non-trivial computational
task, that we address using a Krylov-based reduction [27, 52, 54] for e�ciency.5

The key idea is to prevent the direct computation of the matrix functions,
and instead, calculate the action of the matrix f(⌦2) on a vector x 2 C3N using
a Krylov subspace projection method as described in [59]. A simple approach
to approximate f(⌦2)x would be the use of the truncated Taylor series of f of
degree m�1 that is given by

Pm�1
k=0 ak⌦

2kx. However, the Taylor coe�cients ak
are not optimal due to truncation, and a more accurate evaluation is desirable.

Krylov subspace and Arnoldi iteration. One can, instead, find the optimal L2
approximation to f(⌦2)x within the m-dimensional Krylov subspace Km (with
m⌧ n) generated by ⌦2 and x:

Km(⌦
2,x) := span

⇣
x,⌦2x, . . . ,⌦2(m�1)x

⌘

as introduced by Aleksey N. Krylov in 1931. Note that, as exploited in the
power method, the term ⌦2(m�1)x approximates the dominant eigenvector, and
thus, the Krylov subspace is an approximation of the subspace formed by the

4In contrast, without filtering the position argument of the non-linearity, the error oscillates
with an amplitude that grows with the step size.

5An excellent survey of suitable methods for the particular purpose of matrix exponential
computation was published by [45]. Twenty-five years later, the same authors presented a
revised version of their survey, cf. [46]. An enormous improvement has been achieved through
the development of Krylov-type methods.
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eigenvectors corresponding to the m largest eigenvalues [44]. An orthonor-
mal basis Xm for the Krylov subspace Km is e�ciently found via Arnoldi it-
eration [5], which uses a stabilized Gram-Schmidt process [53] to compute
Xm := (x0, . . . ,xm�1) 2 C3N⇥m as well as Hm := X ⇤m⌦2Xm 2 Cm⇥m. The ma-
trix Hm is in upper Hessenberg form, and describes the projection of ⌦2 onto
Km(⌦

2,x) relative to the basis Xm. Moreover, this Hessenberg matrix satisfies
g(⌦2)x = X ⇤mg(Hm)e1 where e1 = (1,0 . . . ,0)t for any polynomial g of order less
than m (see [52], Lemma 3.1). One thus obtain the approximation:

f(⌦2)x ⇡ X ⇤mf(Hm)e1

where the initial problem of the evaluation of a function with 3N⇥3N range has
been reduced to the evaluation of a function with m⇥m range, where m⌧ 3N
is the length of the Krylov basis.

Final evaluation. Finally, the remaining function of a low-dimensional matrix
can be e�ciently evaluated by f(Hm) =TT

f(D )T via an unitary eigendecompo-
sition of Hm =TTDT. Since D is diagonal, the evaluation of f(D ) can be done
trivially, per diagonal element, with only m evaluations.

Automatic determination of Krylov dimension. To determine a conservative
value of m such as the Krylov-based evaluations of matrix functions remain
below a given error threshold, we follow [27]: the absolute error

✏m :=
���
f(⌦2)x �X ⇤mf(Hm)e1

���

can be bounded from above by ✏m  10e�m2/(5⇢) if
p
4⇢  m  2⇢ and by

✏m  10/⇢ e�⇢
⇣
e⇢
m

⌘m
if m � 2⇢ for f(·) = exp(·) if the spectrum of the symmetric

positive-definite system matrix ⌦2 is a subset of [0,4⇢]. (Note that we ap-
proximate ⇢ with the use of a linear time Gershgorin circle approach.6) Since
other functions f can trivially be derived from matrix exponentials and trivial
algebraic operations, it allows us to determine the basis length m for a given
maximum desirable error.

3.6. Long-range potential evaluations

A final issue to address is the e�cient evaluation of the long-range Lennard-
Jones and Coulomb potentials for non-bonded interactions. While a naive eval-
uation of the forces on all pairs of nuclei is of quadratic complexity, we employ

6For a matrix A := ⌦2 2 C3N⇥3N , the Gershgorin circles G1, . . . ,G3N named after Semyon
A. Gershgorin are defined by Gi := S(aii ,

P
j=1..3N |aij |) for i 2 {1, . . . ,3N }. We denote by S(x,r)

the circle of center x 2 C � R2 with radius r 2 R. According to Gershgorin’s circle theorem, the
spectrum of A is a subset of the union of all Gershgorin circles G� := S3N

i=1Gi . Furthermore,
the number of Gershgorin circles included in each connected component of G� are equal to
the numbers of eigenvalues included in the same components, see [17]. This is used to easily
determine approximations for the extremal eigenvalues of the matrix A = ⌦2. Because ⌦2

is symmetric, the spectrum of AT is identical and a second estimation can be realized using
columnwise evaluated Gershgorin circles. Since A is sparse, the whole process has linear
complexity.
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Figure 2: Illustration of the Fast Multipole Method (FMM): instead of computing all pairwise
interactions, the potential outside a sphere of radius R due to all particles inside the sphere is
expressed by its outer multipole expansion.

the Fast Multipole Method (FMM, originally introduced in [18]) to reduce po-
tential evaluation to a linear number of operations. Legendre polynomials are
used in the spherical series expansion of the potential, see Appendix C for a brief
overview of the FMM approach in our context. Two types of expansions are
distinguished: the outer expansion, expressing the potential of a charged parti-
cle located outside a sphere of a fixed radius due to all charged particles inside
it, and the so-called inner expansion, describing the potential due to all charged
particles outside the sphere, see Fig. 2. The approximations of the potentials
are used in conjunction with a hierarchical space partitioning technique—in our
case, an octree. The outer expansions are computed for all particles at the leaf
level of the octree and are then accumulated in a bottom-up pass by applying
concatenation, translation, and rotation operations. In a subsequent top-down
pass over each level, the inner expansions are computed from the outer ex-
pansions. We thus obtain a linear-time evaluation of all pairwise long-range
interactions.

3.7. Discussion

We note here that the integration scheme we described is valid for a broad
range of applications: any simulation involving very strong harmonic potentials
can benefit from our semi-analytical approach, including coarse graining meth-
ods where pseudo-atoms are used to approximate entire groups of atoms and
pseudo-forces are typically chosen to be harmonic [34]. For a serial implementa-
tion of our algorithm, the most time consuming part is the multiple evaluations
of matrix functions. Since these evaluations only require matrix and vector op-
erations during the execution of the polynomial Arnoldi iteration, an e�cient
low grain parallelism can be achieved trivially by parallelizing these elementary
linear algebra operations. Therefore, our approach combines the two desirable
properties of being easy to parallelize and being stable for large time steps.
Moreover, our integrator inherits the velocity Verlet algorithm’s simplicity with
which it can be combined with various more advanced MD techniques, such as
multiple time steps or thermostats.
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Figure 3: Unfolding DNA experiment: relative error Erel as a function of the step size �t
in log� log scale for our semi-analytical algorithm (blue curve) and the velocity Verlet-based
integration scheme (red curve), both using a FMM-based evaluation of non-bonded potentials.
The step size �t = 4.7fs leading to an error Erel = 1.0% using our semi-analytical algorithm
is labeled. Velocity Verlet method requires a step size three orders of magnitude smaller to
achieve the same relative error.

4. Simulation Experiments

In this section, we demonstrate the scalability, stability, and long-term be-
havior of our approach to molecular dynamics for a series of simulation runs.
Force field parameters were chosen from the Assisted Model Building with En-
ergy Refinement (AMBER) data set [3]. Simulation of fullerenes and nanotubes,
this time using Brenner bond order potentials, are also presented to exemplify
the versatility of our method. When comparing our approach with existing in-
tegration methods in molecular dynamics, we use a fully serial execution (i.e.,
no parallelization) of both of our semi-analytical integrator and of the classical
velocity Verlet [60] (also known as Newmark-� integrator for � = 0 and � = 1/2;
its simplicity and frequent use by practitioners makes it an ideal reference im-
plementation), as parallelization could render execution times less obvious to
analyze. All our timings were measured on a 2.7GHz Intelr CoreTM i7 com-
puter with 16GB DDR3 SDRAM.

4.1. DNA unfolding: Large time steps

As a first evaluation of our approach, we use a simulation of the unfold-
ing of DNA, using two complementary strands with a nucleic acid sequence
forming the genetic palindrome CGCGAATTCGCG.7 The DNA helix is un-
folded by breaking the hydrogen bonds between the strands (as is typically
happening in, e.g., protein biosynthesis via the helicase enzyme, see [2]). Each
CGCGAATTCGCG strand contains 387 nuclei (N = 774) as shown in Fig. 4.

7DNA nucleotides pair in the following way: Adenine (A) with Thymine (T) and vice versa;
Cytosine (C) with Guanine (G) and vice versa. A nucleotide sequence is denoted a genetic
palindrome if and only if it is equal to its pair complement [2].
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We simulate the whole unfolding process, which lasts around 0.5ps. Initial ve-
locities �0 are set according to the Maxwell-Boltzmann distribution d(�0) =
4⇡(m/(2⇡kT ))1.5�20 exp(�m�20/(2kT )), where m is the nucleus mass, k is Boltz-
mann’s constant, and T = 296.15K is the thermodynamic temperature [42, 43].

We begin by comparing the accuracy of the semi-analytical scheme versus
velocity Verlet, both using the same FMM-based evaluation of non-bonded po-
tentials. We measure the relative error Erel in position space after simulating a
time duration of 0.5ps, i.e., the L2 error in position of the nuclei are measured
compared to a reference velocity Verlet simulation with step size �tref := 10�8fs.
Fig. 3 illustrates the dependence of Erel on the step size �t for both the semi-
analytical algorithm and the velocity Verlet integrator. Our numerical tests
systematically show asymptotic quadratic accuracy (cf. Fig. 12). The error
is smoothly decreasing with decreasing step size for both schemes as expected
from second-order accurate schemes. However, one can notice that our approach
achieves a significantly lower error for a given time step size. In particular, if
a maximum relative error of Erel = 1.0% is acceptable, one can use a step size
of �t = 4.7fs with our semi-analytical approach (the size of the Krylov basis is
automatically found to be m = 36 according to the estimation of ✏m for this
time step size); to reach the same maximum relative error, the velocity Verlet
integrator requires a three orders of magnitude smaller step size of 3.9as. How-
ever, the runtime per iteration of our semi-analytic integrator is 40 times longer
than for the velocity Verlet integrator due to the need for estimating matrix
functions. Therefore, our scheme achieves a typical speed-up of 30 for a given
accuracy, taking around 5 minutes using the semi-analytical method compared
to 2.5 hours using the velocity Verlet algorithm.

Finally, we confirm in Fig. 5, that the linear and angular momenta are nu-
merically preserved over the course of the unfolding, and the Hamiltonian does
not drift over long runtimes (> 105 time steps), remaining within 0.2% of its
original value. This result, representative of all our other tests, gives further
proof that the accuracy threshold used in our Krylov subspace reduction does
not a↵ect the numerical properties that are expected from a time-reversible and
symplectic integrator. The approximation errors introduced by our fast evalua-
tion of matrix functions are, indeed, of the same order as the tolerance thresholds
used in non-linear solvers called by implicit (symplectic and/or time-reversible)
geometric integrators. The numerical properties of the basic integrator are thus
preserved as we will further demonstrate in our subsequent tests.

4.2. Water simulation: scalability, parallelization, and long-term behavior

Our semi-analytical integration scheme (Eq. (10)) is supposed to have a time
complexity linear in the number of nuclei at play due to our use of a Krylov sub-
space projection for our matrix function evaluations and of the Fast Multipole
Method for the e�cient evaluation of non-bonded potentials. To support this
claim, we simulate an increasing number of interacting H2O molecules—from
20=1 to 216=65,536 H2O molecules (i.e., N =3 to N =196,608 nuclei). Again,
initial velocities are set up according to the Maxwell-Boltzmann distribution,
with the temperature set to T = 296.15K. For each power-of-two number of
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Figure 4: Two unfolding CGCGAATTCGCG strands simulated with our approach, visualized
using a space-filling (left) and a ball-and-stick model (right).
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Figure 5: Illustration of the relative change of the Hamiltonian (red curve), linear momen-
tum (green curve), and angular momentum (blue dashed curve) over the course of the DNA
unfolding example for our semi-analytical integration scheme with step size �t = 4.7fs.

molecules, we run a simulation over 100 time steps with a step size of �t=5.0fs.
The runtimes exhibit a clear linear trend as illustrated in Fig. 6, confirming
that our combination of a semi-analytical integration and a FMM-based non-
bonded potential evaluation scales linearly as expected. The same figure shows
that a typical speedup behavior is witnessed when a POSIX thread based CPU
parallelization is used instead of a fully sequential implementation.

Additionally, we computed the radial distribution function (also called pair
correlation function) g(r) during simulation of 2,500 H2O molecules over 2ns
using time steps of 260fs to test the validity of our results. This classical measure
of molecule distributions from statistical mechanics describes the histogram of
the distances between the two kind of atoms (hydrogen and oxygen). The
fact that g(r) is in agreement with theoretical results (see, e.g., [41]) and is
numerically preserved over > 7,000 steps (see Fig. 7) o↵ers yet another indicator
of the stability of our integration method. We also measured the impact of the
time step size – and thus, the runtime – on the relative error (compared, as
earlier, to a reference implementation with three orders of magnitude smaller
time steps) after 2ns of simulation. Fig. 9 shows a total speedup factor of 30
compared to velocity Verlet for an equivalent relative error, and confirms a
graceful degradation of the error for large time steps.

Finally, the excellent long-term properties of the semi-analytical integration
scheme are demonstrated by visualizing the Hamiltonian and both linear and
angular momenta of the simulation of 128 H2O molecules over a time interval of
2µs using time steps of 30fs. Even after over 66million steps of time integration,
no drift is present, and the energy oscillations are limited to below 5% of the
original energy. Here again, the approximation of our matrix functions does not
hamper the numerical properties of our integrator. (See Fig. 8.)

4.3. Protein Folding: Long-term behavior

To further underline the practicability of our approach, we ran a folding sim-
ulation of the tryptophan cage (Trp-Cage) protein sequence NLYIQWLKDGG-

16



-10

-5

0

5

10

lo
g

2
(T

s/
s)

0

10

20

30
S

re
l :=

T
s /T

p

0 4 8 12 16

log2(N/3)

Figure 6: Average run-time Ts (plotted with squares; their regression line is shown in blue)
per iteration for the fully-sequential simulation of interacting water molecules over 0.5ps as
a function of the number of H2O molecules (shown in log� log scale), using a step size of
�t = 5.0fs. If a direct, non-optimized CPU parallelization using pthreads is used, the speedup
Ts/Tp between the serial execution time Ts and parallel execution time Tp (plotted in circles;
their sigmoidal fit is shown in red) levels o↵ around 24.

PSSGRPPPS with N = 301 atoms. Starting from a linear chain, this protein
should fold into its native conformation within 4 to 10ns at a temperature of
350K [48]. Our simulation for 10ns of this folding process, carried out in about
90 minutes, is shown in Fig. 10. Accurate preservation of the Hamiltonian as
well as linear and angular momenta are demonstrated in Fig. 11, o↵ering more
evidence that our fast evaluation of matrix functions does not interfere with the
symplectic and time-reversible nature of our basic integration method. Finally,
we also compared time step size and runtime vs. positional errors (based, once
again, on a reference implementation with three orders of magnitude smaller
time steps) in Fig. 9, exhibiting the same graceful degradation as a function of
the time step size.

4.4. Fullerenes and Nanotubes: Bond order potentials

Semi-analytical integration can e�ciently be performed for more general po-
tentials as well. We tested our integrator on the simulation of nanotubes and
fullerenes, using Brenner bond order potentials8. In contrast to classical molec-
ular dynamics force fields, this type of potential can describe several bonding
states, and is an example of empirical many-body potential that models in-
tramolecular chemical bonding in several hydrocarbon molecules as well as in
graphite and diamond lattices [7]. It is of the form

VBr :=
NX

i=1

i�1X

j=1

fij
⇣
rij

⌘⇣
UR

⇣
rij

⌘
�BijUA

⇣
rij

⌘⌘

8Bond order potentials are based on Linus C. Pauling’s bond order concept, which defines
the bond order as the half di↵erence of binding and anti-binding valence electrons in the
molecular orbital [1, 57].
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Figure 8: Plot of the relative changes of the Hamiltonian (red curve), linear momentum (green
curve), and angular momentum (blue dashed curve) over a long-term water simulation of 2µs
using our semi-analytical integration scheme with step size �t = 30fs (i.e., 66 million steps).

with a repulsive part UR(rij ) and an attractive part UA(rij ). The short range
cut-o↵ function fij (rij ) limits the interaction of the nuclei to their nearest neigh-
bors [8].

A simple simulation example of a rotating buckminsterfullerene C60 is il-
lustrated in Fig. 12. Similar to the DNA unfolding test, over three orders of
magnitude larger step sizes can be used with our integration scheme compared
to velocity Verlet for a total speedup factor of 30. We also computed the L2
error in position of the carbon atoms compared to a reference velocity Verlet
simulation with step size �tref := 10�8fs, and observed second-order accuracy
for small time steps, with an error growing slowly for larger time steps.

We also tested the accuracy of our semi-analytical method in the high fre-
quency range by simulating the atomic-resolution nanomechanical mass sensor
introduced in [31]: the idea is to use a nanomechanical resonator as a high preci-
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with squares) as a function of the L2 relative error after a 2ns water simulation (left) and
a 10ns protein folding simulation (right). All computations were carried out using a single
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Figure 10: Folding of the NLYIQWLKDGGPSSGRPPPS sequence simulated using our ap-
proach over 10ns, visualized using a space-filling model. Using naive parallelization, we achieve
a speed-up of about a factor of 30, so that the protein folding can be carried out in about 90
minutes, for a L2 position error of 10%.
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Figure 11: Plot of the relative changes of the Hamiltonian (red curve), linear momentum
(green curve), and angular momentum (blue dashed curve) over a protein folding simulation
of 10ns with our semi-analytical integration scheme. The relative L2 error in position is about
10% whereas the Hamiltonian oscillates within 0.6% from its original value.
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(e) Convergence plot

Figure 12: Simulation of a rotating buckminsterfullerene C60 [33] (named after the famous
architect R. Buckminster Fuller) for �t = 5.0fs using our semi-analytical algorithm. The log-
log error plot shows a quadratic rate of convergence (red dotted line is of slope 2) of the
integrator with decreasing time step size (compared to a reference solution), and an error
increasing very slowly as the time step grows.
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Figure 13: Simulation of the oscillating nanotube resonator composed of N = 651 carbon
atoms. A few carbon atoms are replaced by gold (Au) atoms to illustrate the adsorption of
gold atoms in carbon nanostructures.

sion mass sensor, since the resonant frequency shifts if a particle adsorbs to the
resonator. The authors of [31] reach a sensitivity in the range of one Au (gold)
atom using a nanotube resonator without destructive ionization e↵ects typically
found in traditional mass spectrometers. The relation indicating how a change
of mass �m influences the resonant frequency ⌫res is highly dependent on the
geometry: a position dependent responsivity function can be used to describe
the ratio of �⌫res and �m. Assuming that the adsorbed mass is distributed
along the resonator, this relation can be expressed by �⌫res = �⌫0/(2m0)�m,
in which ⌫0 denotes the initial resonant frequency of the resonator with initial
mass m0.

We set up a nanotube resonator as illustrated in Fig. 13 composed of N = 651
C (carbon) atoms and measure the frequency shift �⌫res depending on the
change of mass �m. As illustrated in Fig. 14 the linear decrease of �⌫res is
successfully reproduced with a mass sensitivity of only one atomic mass unit. For
the whole measurement a step size �t = 20.0as is used, which is comparatively
large for this accuracy. In contrast, such a high fidelity simulation cannot be
carried out e�ciently using velocity Verlet-based integration since 104 times
smaller step sizes are needed in order to capture the linear trend of Fig. 14.
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Figure 14: Illustration of the frequency shift �⌫res depending on the change of mass �m in
a range varying from 1u to 9u. The linear reference given by �⌫res(�m) = �⌫0/(2m0)�m with
⌫0 = 318.72MHz is shown (red line), as well as the regression line (blue dashed line).

5. Conclusions

We have introduced an exponential integrator for molecular dynamics. Our
integration scheme is explicit, which makes it easy to implement either serially
or with fine-grained parallelism. Far field approximations are used to render
the integrator linear in complexity with the number of nuclei. We also pre-
sented ample numerical evidence of second-order accuracy in time, as well as
an excellent long-term behavior in terms of momenta and energy preservation
inherited from the symplectic and time-reversible nature of the integrator. Most
distinguishing from previous integrators with similar properties is its ability in
extending the length of the time step by over three orders of magnitude com-
pared to the classical velocity Verlet, a property that is obtained by treating
the strongest (covalent bond) harmonic forces in a semi-analytical manner to
bypass the usual time step size restrictions of explicit integrators. As a result,
our approach o↵ers a speedup of at least a factor 30 compared to classical MD
algorithms on all the examples we tested. We believe that the e�ciency of
its treatment of linear forces makes this alternative approach interesting and
very valuable for practical simulation of large scale molecular systems and other
dynamical systems.

Limitations. Our approach will only o↵er a significant speedup in systems with
strong harmonic potentials. However, this case is particularly common: not
only molecular systems are typically exhibiting much stronger covalent bonds
than all other forces, but even applications such as coarse graining make heavy
use of strong harmonic potentials between pseudo-nuclei.

Future Work. Our work can be extended in various ways. First and fore-
most, a fine-grained parallel implementation on GPU is likely to bring much
improved performance, since carefully hand-coded routines can dramatically
enhance speedup of explicit integrators (see, e.g., [26]). Second, our algorithm
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can easily be improved as well. For instance, the use of multiple time steps
in the Verlet-1/r-RESPA/Impulse MTS method can be incorporated as well to
better deal with the non-linear part of the force field—although the savings will
be unlikely to a↵ect the e�ciency of our approach in a significant way since
we already addressed the sti↵est part. Similarly, Langevin dynamics [32] could
be used to replace solvent forces by homogenized and stochastic forces while
preserving symplecticity [56]. Finally, we also plan to test out an approach
to obtain coarse-grained parallelism using rational Krylov subspaces instead:
the associated rational Arnoldi method, in which a linear system is solved in-
dependently for each pole of the polynomial denominator [20], could o↵er a
coarse-grained way to parallelize the matrix function computations involved in
the integrator.
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Appendix A. Ehrenfest’s Molecular Dynamics

In quantum mechanics, a system S of N nuclei (i.e., protons and neutrons)
and K electrons is defined by its wave function

 := S(R,r, t)

which is the solution of the Schrödinger equation9. In our notation, R :=
(R1, . . . ,RN )T denotes the set of positions R1, . . . ,RN 2 R3 of the nuclei and
r := (r1, . . . ,rK )

T the set of positions r1, . . . ,rK 2 R3 of the electrons. All these
positions are dependent on time (denoted by t).

Heisenberg’s uncertainty principle10 states that one cannot determine the
exact state of S. Hence, the wave function does not provide a classical descrip-
tion of the system and its observables, but instead serves as a means to predict
probabilities of observing specific measurements11: the probability that S is at
time t in the volume element

QN+K
i=1 dVi of the space of all possible configurations

centered at (R,r) is given by

h (R,r, t) | (R,r, t)i
N+KY

i=1

dVi .

Analogous to the Hamiltonian in classical mechanics, the Hamilton operator
H corresponds to the total energy of the system, and its spectrum is the set

9This equation describes the evolution in time of a non-relativistic quantum systems. It
was formulated by Erwin R. Schrödinger in 1926 as a wave equation and successfully used in
its first application to explain the spectrum of the hydrogen atom.
10This uncertainty principle discovered by Werner K. Heisenberg in 1927 formulates a fun-

damental limit to the precision with which certain pairs of physical properties (such as posi-
tion/momentum) can be known simultaneously.
11This view is present in the Copenhagen interpretation of quantum mechanics formulated

by Niels H. Bohr and Werner K. Heisenberg during a meeting in Copenhagen in 1927. It is
based on Max Born’s probability interpretation of the wave function.
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of possible measurements of the total energy. The time-independent operator
H :=H(R,r) in the case of negligible relativistic e↵ects [19] is given by

H :=� ~2

2me

KX

k=1

�rk �
~2

2

NX

k=1

1
Mk
�Rk
� e2

4⇡✏0

KX

k=1

NX

j=1

Zj

���rk �Rj

����1

+
e2

4⇡✏0

KX

k<j

���rk � rj
����1 + e2

4⇡✏0

NX

k<j

ZkZj

���Rk �Rj

����1

in which the first two terms correspond to the operators Te and Tn representing
the kinetic energy of the electrons and of the nuclei respectively, while the last
three terms are the Coulomb potential operators Ven, Vee, and Vnn, representing
the electrostatic potential energies due to interactions between, respectively,
electrons and nuclei, electrons only, and nuclei only. Zk and Mk denotes the
atomic number of the k-th nucleus and its mass, while e denotes the elementary
electric charge, me the electron mass, ✏0 the vacuum permittivity, and ~ the
reduced Planck constant.

The Schrödinger equation can now be written out as

i~@t (R,r, t) =H (R,r, t) (A.1)

where we use �rk (R,r, t) := �y (R,r1, . . . ,rk�1,y,rk+1, . . . ,rK , t)|rk and similarly
for �Rj

 . Moreover, since the Hamiltonian is not an explicit function of time,
the Schrödinger equation is separable into a product of spatial and temporal
parts. Indeed, the wavefunction takes generally the “product” form  (R,r, t) =
 (R,r) · f (t), so Eq. (A.1) can then be reexpressed as:

i~ f (t)�1dtf (t) =  (R,r)�1H (R,r) (A.2)

for  (R,r) · f (t) , 0. Since the left-hand (resp., right-hand) side of Eq. (A.2) is
only dependent on time (resp., on the positions), we can split the equation in
two:

i~ f (t)�1dtf (t) = E (A.3)

and
 (R,r)�1H (R,r) = E (A.4)

where a constant E is introduced [40]. Eq. (A.3) has closed-form solutions
of the form f (t) = cexp(�iEt/~) with integration constant c scaling the time
evolution of the wave equation. Eq. (A.3) can be formulated as an eigenvalue
problem H (R,r) = E (R,r) of the operator H, and is known as the stationary
Schrödinger equation. Hence, to every (eigen) energy value Ek correspond a
spatial function  k and a temporal function fk . Consequently, the solution of
Eq. (A.1) is given by a superposition of eigenfunctions  k and corresponding fk :

 (R,r, t) =
X

k

ckexp
✓
� i
~
Ekt

◆
 k(R,r)
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with weights ck =
R ⌦
 k(R,r)

��� (R,r,0)
↵
dRdr.

Now we apply the so-called single configuration ansatz as presented in [19].
For that we define the decomposition H =He +HK with He := Te +Vee +VeK +
VKK = Te +Ve and Ve := Vee +VeK +VKK . It leads to the approximation

 (R,r, t) ⇡  ̃(R,r, t) := �(R, t)�(r, t)exp
 
i
~

Z t

t0

Ẽe(⌧)d⌧
!

(A.5)

with nucleus wave function �, electron wave function �, and phase vector Ẽe(t) =R ⌦
�(R, t)�(r, t)

���He�(r, t)�(R, t)
↵
dRdr. Note that � and � are normalized, i.e.R h�(R, t) |�(R, t)idR =

R ⌦
�(r, t)

����(r, t)
↵
dr = 1. We substitute  ̃(R,r, t) ⇡ (R,r, t)

from Eq. (A.5) in Eq. (A.1), multiply with �⇤(r, t) and �⇤(R, t), and integrate
over R and r. Due to energy conservation, i.e.

dt

Z D
 ̃

���H ̃
E
dRdr = 0,

we end up with the following system of coupled equations12:

i~@t�(r, t) +
X

k

~2

2me
�rk�(r, t) =

Z
h�(R, t) |Ve(R,r)�(R, t)idR�(r, t),

i~@t�(R, t) +
X

k

~2

2Mk
�Rk

�(R, t) =
Z

⌦
�(R, t)

���He(R,r)�(r, t)
↵
dr�(R, t).

We approximate the nucleus wave function using classical particles:

�(R, t) = A(R, t)exp
✓ i
~
S(R, t)

◆

with amplitude A(R, t) 2 R>0 and phase factor S(R, t) 2 R. Separating the real
and the imaginary parts leads to

@tS(R, t) +
NX

k=1

1
2Mk

⇣
rRk

S(R, t)
⌘2

+
Z

⌦
�(r, t)

���He�(r, t)
↵
dr = ~2

NX

k=1

1
2Mk

�Rk
A(R, t)

A(R, t)

and

@tA(R, t) +
NX

k=1

1
Mk

⇣
rRk

A(R, t)
⌘⇣
rRk

S(R, t)
⌘

+
NX

k=1

1
2Mk

A(R, t)
⇣
�Rk

S(R, t)
⌘
= 0.

12This equations are also called TDSCF system, since Paul A. Dirac’s time-dependent self-
consistent field approach (TDSCF) is based upon it, see [12].
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Since ~ is close to zero, the upper equation can be rewritten as

@tS(R, t) +
NX

k=1

1
2Mk

⇣
rRk

S(R, t)
⌘2

+
Z D

�̃(r, t)
���He�̃(r, t)

E
dr = 0

for a function �̃(r, t) ⇡ �(r, t). With the shorthand notation rR = (rR1 , . . . ,rRN
)T,

this last equation has a Hamilton-Jacobi form

@tS(R, t) +H(R,rRS(R, t)) = 0

in generalized coordinates R for a Hamiltonian H(R,P) = T (P) +V (R), kinetic
energy T (P) =

PN
k=1 kPkk2 / (2Mk), and conjugated momenta P(t) := rRS(R(t), t).

Using the classical Hamilton-Jacobi formalism, we get the equations of motion

dtPk = �rRk

Z D
�̃(r, t)

���He�̃(r, t)
E
dr =: �rRk

V E
e (R(t)),

respectively
MkR̈k(t) = �rRk

V (R(t)), (A.6)

for k = 1, . . . ,N , or in abbreviated first-order notation

U̇ = J�1rUH(U), with U(t) :=
"
P(t)
R(t)

#
and J :=

"
0 1
�1 0

#
. (A.7)

Eq. (A.7) describes a classical Hamiltonian system acting in a phase space U ⇢
R6N . Hence the nuclei are moving according to the equations from classical
mechanics in an e↵ective so-called Ehrenfest13 potential V given by the electrons
resulting from averaging over the degrees of freedom of the electrons weighted
with He.

Appendix B. Hamiltonian Systems and Symplecticity

Symplecticity is a key issue [55] for the integration of Hamiltonian systems
like Eq. (A.7), we thus briefly illustrate this concept in this appendix.

The flow of Eq. (A.7) is defined by the mapping 't : U ! R6N , which maps
U0 to 't(U0) := U(t) if and only if U0 = U(t0). We will point the relevance
of symplecticity out according to [22]: a di↵erentiable mapping g : U ! R6N

acting on an open subset U ⇢ R6N is called symplectic, i↵

! (g 0(U)⇠,g 0(U)µ) = ! (⇠,µ) (B.1)

13There exists a more general theorem named after Paul Ehrenfest, which renders the
connection between classical and quantum mechanics. It states that in special cases, classical
equations of motions can be used to compute average values in quantum-mechanical systems.
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holds for all ⇠,µ 2 R6N . In Eq. (B.1), g 0 denotes the Jacobian of g, whereas
the mapping ! : R6N ! R6N maps the pair (⇠,µ) to !(⇠,µ) := ⇠TJµ.14 One
can think about a symplectic mapping as one which preserves the structure of
the phase space, in the sense that it preserves the surface areas resulting from
the projections onto planes of momenta and positions. In order to make this
statement clear, consider a two-dimensional submanifold M of a set U ⇢ R2

given by the image M = ⇣(C) of a compact set C ⇢ R2 under a continuous
di↵erentiable function ⇣ : R2 ! R2. One can regard M as the limit of the
unions of the parallelograms, which are spanned by the vectors @p⇣(p,q)dp
and @q⇣(p,q)dq with areas !

⇣
@p⇣(p,q)dp,@q⇣(p,q)dq

⌘
. Integration over all

parallelograms leads to the area

⌦ (M) =
Z

C
!

⇣
@p⇣(p,q),@q⇣(p,q)

⌘
dpdq (B.2)

of the whole surface of M. After applying a mapping g : U ! R2 on M, the
surface area reads

⌦ (g(M)) =
Z

C
!

⇣
@p(g �⇣)(p,q),@q(g �⇣)(p,q)

⌘
dpdq. (B.3)

With (g�⇣)0(p,q) = (g 0�⇣)(p,q)⇣0(p,q), it can be easily proven that the integrands
in Eq. (B.2) and Eq. (B.3) are equal and hence ⌦ (g(M)) =⌦ (M) holds if and
only if g is symplectic.

Furthermore, it can also be proven that for each fixed t 2 R�0, the flow 't of
a Hamiltonian system is a symplectic transformation.15 Conversely, it can be
shown that a system is locally Hamiltonian if its flow is symplectic.16 Moreover,
the set of all Hamiltonian systems is closed under transformations of coordinates
with symplectic functions, and every function which maps a Hamiltonian system
to a Hamiltonian system is symplectic.17 Therefore, the notions of canonical
transformations (i.e. transformations described by Hamiltonian systems) and
symplectic transformations are equivalent.

Therefore it is evident that integration methods for Hamiltonian systems,
which are structure preserving in the sense of symplecticity, are naturally of
special interest. By definition, an integration method is symplectic if and only
if the discrete flow ��t : U0 = U(t0) 7! U1 ⇡ U(�t) with fixed step size �t is

14To motivate the definition of !, consider the case of a single particle moving in the one-
dimensional space R. Let ⇠,µ 2 U be two-dimensional vectors of the phase space U ⇢ R2. The

area of the parallelogram spanned by ⇠ and µ is given by det(⇠,µ) = ⇠TJµ = !(⇠,µ).
15This statement was proved by J. Henri Poincaré in the 19th century, if the Hamiltonian

is twice continuously di↵erentiable. It follows for t = 0 directly and for all t 2 R>0 by calcu-

lation with dt!
⇣
@U0't (U0),@U0't (U0)

⌘
= 0 using the fact, that @U0't (U0) is a solution of the

variational equation JV̇ = r2H('t (U0))V .
16A system U = F (U) is called locally Hamiltonian, if and only if for every U0 2 U there

exists a neighborhood with F (U) = J�1rH(U) for some analytical function H.
17This holds for continuous di↵erentiable functions and is known as Theorem X proven by

Carl G. Jacobi in the 19th century.
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symplectic. Such methods accurately preserve linear and angular momentum,
and energy does not drift, but oscillates instead around the initial energy.18

Appendix C. Fast Multipole Method

For completeness, we illustrate in this appendix the Fast Multipole Method
(FFM) using the notation from Fig. 2 for the Coulomb potentials �i (x) result-
ing from charges Qi := Zie in terms of their distances ri to the origin. These
potentials can be written in polynomial terms

�i (x) =
1X

k=0

r̂ki r
�k�1
i Pk

⇣
cos

⇣
^
⇣
xi ,x

0
i

⌘⌘⌘

after the transformation to spherical coordinates xi 7! (ri ,✓i ,'i ), x0i 7! (r̂i , ✓̂i , '̂i )
and the use of Legendre polynomials P0,P1, . . . defined by

Pk( ) =
1

2kk!
d

k
 (( 

2 � 1)k).

For a configuration of N charges of strengths q1, q2, . . . , qN , the potential at a
given point x = (r,✓,') outside is then given by

�(x) =
1X

k=0

kX

l=�k
r�k�1Ml

kY
l
k(✓,'),

in which

M

l
k =

NX

j=1

qj r̂
k
j Y
�l
k (✓̂j , '̂j )

denotes the expansion moment accounting for the charge distribution and

Y

l
k(✓,') =

s
(k � |l |)!
(k + |l |)! P

|l |
k cos(✓)exp(il')

the spherical harmonic polynomials of degree k. For the evaluation process
of the potentials, an octree is built over the set of particles. The multipole
expansion is evaluated for all particles at a leaf node. These potentials are then
propagated throughout the octree in a two-phase process: a bottom-up step, in
which the multipole expansions of all cells on a single level are accumulated and
propagated upwards, and a top-down step, in which the influence of all particles
outside a cell at a certain level onto the particles inside this cell are computed.

18Of course, the intensity of this oscillations depends on the step size �t used for the
integration.
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